The Continuity Equation for Hybrid Systems

Maria Oprea

Center for Applied Mathematics, Cornell University

December 1st, 2023

Notation

Notation	Meaning
М	n dimensional manifold
f	vector field $f: M \to TM$ with flow ϕ_t
S	the impact surface $S \subset M$, codimension 1
Δ	discrete map / the impact/reset map $\Delta: S o M$
μ	reference volume form/reference measure on M
ρ	arbitrary measure on M
h	the density of measure $ ho$ with respect to μ , $h: M ightarrow \mathbb{R}$
$\mathcal{P}(M)$	all measures on M
$\Omega^n(M)$	all top/volume forms on M

Continuous vs. discrete dynamical systems

Discrete

- $x_{n+1} = \Delta(x_n), \Delta : M \to M$
- $\blacktriangleright \phi_k(x) = \Delta^k(x)$

Hybrid systems

 Collisions, state transitions, discontinuities, interventions, biological phenomena, robotics

$$f = \{\dot{x} = v, \dot{v} = 0\}$$
$$S = \{x_1 = x_2\}$$
$$\Delta(x, (v_1, v_2)) = (x, (v_2, v_1))$$

 Collisions, state transitions, discontinuities, interventions, biological phenomena, robotics

src:http://www.focus.org.uk/proton neutron.php

 Collisions, state transitions¹, discontinuities, interventions, biological phenomena, robotics

src: https://geodiode.com/biomes/savannah

¹Scheffer M. and Carpenter S.R. "Catastrophic regime shifts in ecosystems: linking theory to observation". In: *Trends in Ecology and Evolution* 18 (2003).

 Collisions, state transitions, discontinuities, interventions, biological phenomena, robotics

src: https://www.seafoodsource.com/

src: https://doi.org/10.3390/act11030075

Lagrangian vs Eulerian perspective

Particles \implies densities.

Lagrangian

- Precision/ accuracy
- Small number of simulations, low dimension
- Solve an ODE / SDE to obtain the trajectory

Eulerian

- Ensemble of trajectories, many simulations
- Average behaviour
- No sensitive dependence on initial conditions
- Solve a PDE to obtain the evolution of a density

²Saidi M. S. et al. "Comparison between Lagrangian and Eulerian approaches in predicting motion of micron-sized particles in laminar flows". In: *Atmospheric Environment* 89 (2014).

Lagrangian vs Eulerian perspective

Lagrangian

Precision / accuracy

simulations. low dimension

Solve an ODE / SDE to

obtain the trajectory

Small number of

Particles \implies densities.

Eulerian

- Ensemble of trajectories, many simulations
- Average behaviour
- No sensitive dependence on initial conditions
- Solve a PDE to obtain the evolution of a density

Ex: modelling aerosols though the human respiratory system²

²M. S. et al., "Comparison between Lagrangian and Eulerian approaches in predicting motion of micron-sized particles in laminar flows" (2) (2) (2) (2) (2)

Evolution of measures

Continuous

$$\phi_t(x) = x(t), \phi : \mathbb{R} \times M \to M$$

 $\blacktriangleright \rho \mapsto \phi_t \# \rho$

Discrete

$$\phi_k(x) = \Delta^k(x)$$

 $\blacktriangleright \ \rho \mapsto \Delta \# \rho$

Measures vs volume forms on a manifold

"Volume form = absolutely continuous*, infinitesimal measure"

▶ $\rho \in \Omega^n(M)$ ▶ $\rho \in \mathcal{P}(M)$

- $Vol = \rho_x(v_1, v_2, v_3)$
- $\blacktriangleright \ \rho = h\mu$
- In coordinates: $\mu = dx_1 \dots dx_n$

• $Vol = \rho(R)$ • $\rho << \mu \implies \rho = h\mu,$ $h = \frac{d\rho}{d\mu}$ • In coordinates: $\mu = Leb$

Measures vs volume forms on a manifold

"Volume form = absolutely continuous*, infinitesimal measure"

▶ $\rho \in \Omega^n(M)$ ▶ $\rho \in \mathcal{P}(M)$

- $Vol = \rho_x(v_1, v_2, v_3)$
- $\blacktriangleright \ \rho = \mathbf{h}\mu$
- In coordinates: $\mu = dx_1 \dots dx_n$

• $Vol = \rho(R)$ • $\rho << \mu \implies \rho = \mathbf{h}\mu,$ $h = \frac{d\rho}{d\mu}$ • In coordinates: $\mu = Leb$

The Frobenius-Perron operator

 (M, \mathcal{B}, μ) measure space and $\Delta : M \to M$ nonsingular.

Discrete³

The unique linear operator $P: L^1(M) \to L^1(M)$ defined by

$$\int_A Ph(x)d\mu(x) = \int_{\Delta^{-1}(A)} h(x)d\mu(x), \ \forall \ A \in \mathcal{B}$$

³Lasota and Mackey. Chaos, Fractals and Noise. Springer 1994. → E → E → C (12/55)

The Frobenius-Perron operator

 (M, \mathcal{B}, μ) measure space and $\Delta : M \to M$ nonsingular.

Discrete³

The unique linear operator $P: L^1(M) \to L^1(M)$ defined by

$$\int_{\mathcal{A}} \mathsf{Ph}(x) d\mu(x) = \int_{\Delta^{-1}(\mathcal{A})} h(x) d\mu(x), \; \forall \; \mathcal{A} \in \mathcal{B}$$

³Lasota and Mackey, *Chaos, Fractals and Noise.* $(\square) (\square) ($

The Frobenius-Perron operator

$$\dot{x} = f(x)$$
 with flow ϕ_t .

Continuous

The semigroup of transfer operators $P_t : L^1(M) \to L^1(M)$ defined by:

$$\int_{A} P_{t}(f) d\mu(x) = \int_{\phi_{-t}(A)} f(x) d\mu(x)$$
backwards in time

▶ Nonlinear finite dimensional \rightarrow linear infinite dimensional

- ▶ Nonlinear finite dimensional \rightarrow linear infinite dimensional
- Dominant eigenfunctions of P_t is the invariant densities⁴

- ▶ Nonlinear finite dimensional \rightarrow linear infinite dimensional
- Dominant eigenfunctions of P_t is the invariant densities⁴
- Frobenius Perron = dual of Koopman

- ▶ Nonlinear finite dimensional \rightarrow linear infinite dimensional
- Dominant eigenfunctions of P_t is the invariant densities⁴
- Frobenius Perron = dual of Koopman
- Study of long term behaviour.

Example

$$M = [0,1], \quad \Delta(x) = 4x(1-x), \quad h(x) = 1$$

- Eigenfunctions of P_t are invariant densities⁵
- Frobenius Perron = dual of Koopman
- Study of long term behaviour.

Invariant density vs 3rd iterate of the transfer operator

⁵Lasota and Mackey, Chaos, Fractals and Noise. < => < => < => < => < => < => < <> <<

<u>Goal</u>: Obtain an equation for the evolution of h.

<u>Goal</u>: Obtain an equation for the evolution of h.

Discrete

Fix measure $\rho = h\mu$

• Let
$$u(k, x) = P^k h(x)$$

• Change variables $\int_A Ph(x)d\mu(x) = \int_{\Delta^{-1}(A)} h(x)d\mu(x) \implies$

$$Ph(x) = \sum_{y \in \Delta^{-1}(x)} h(y) J^{-1}(y)$$

determinant of the inverse of the Jacobian matrix $(\Delta_*)_{ij} = \frac{\partial \Delta_i}{\partial x_i}$

<u>Goal</u>: Obtain an equation for the evolution of h.

Discrete

Fix measure $ho = h\mu$

• Let
$$u(k, x) = P^k h(x)$$

• Change variables $\int_A Ph(x)d\mu(x) = \int_{\Delta^{-1}(A)} h(x)d\mu(x) \implies$

$$Ph(x) = \sum_{y \in \Delta^{-1}(x)} h(y) J^{-1}(y)$$

determinant of the inverse of the Jacobian matrix $(\Delta_*)_{ij} = \frac{\partial \Delta_i}{\partial x_i}$

►
$$u(k,x) = \sum_{y \in \Delta^{-1}(x)} u(k-1,y) J^{-1}(y)$$

Continuous

 Fix initial h and define u(t,x) = P_th(x) = density of ρ_t = φ_t#ρ

► Goal: equation for *u*.

Lemma

If f "nice enough"⁶ then $\rho_t = \phi_t \# \rho$ satisfies the equation

$$\frac{\partial \rho_t}{\partial t} + \nabla (f \rho_t) = 0 \tag{1}$$

in the weak sense. Conversely, any solution of (1) can be written as $\rho_t = \phi_t \# \rho$ for some flow ϕ_t .

⁶Ambrosio Luigi, Gigli Nicola, and Savaré Giuseppe. *Gradient Flows in Metric Spaces and in the Space of Probability Measures*. Birkhäuser Verlag, 2005.

Continuous

Fix initial h and define u(t,x) = P_th(x) = density of ρ_t = φ_t#ρ

► Goal: equation for *u*.

How does the density evolve?

Continuous

- Fix initial h and define $u(t, x) = P_t h(x) = \text{density of}$ $\rho_t = \phi_t \# \rho$
- ▶ Goal: equation for *u*.

 $\langle \nabla u, f \rangle = \mathcal{L}_f u =$

the flow.

•
$$ho_t = u(t,x)\mu$$
 & product rule

$$\frac{\partial u}{\partial t} + du(f) + div_{\mu}(f)u = 0$$
(2)
 $\langle \nabla u, f \rangle = \mathcal{L}_{f}u = \text{how much}$
the density changes due to
the flow
 $\mathcal{L}_{f}\mu = \text{rate of expansion of a}$
unit volume as it goes around
the flow

The infinitesimal generator⁸

Define $\mathcal{A}: \mathcal{D}(\mathcal{A}) \to L^1(\mathcal{M}, \mu)$, $\mathcal{A}h = {}^7 \lim_{t \to 0} \frac{P_t h - h}{t}$

Example

• $T_t h = h(x - ct) \implies \mathcal{A} = -c \frac{\partial}{\partial x}$ • Transport PDE : $\frac{\partial u}{\partial t} = \mathcal{A}u = -c \frac{\partial u}{\partial x}$

Continuity equation $\iff A = -\mathcal{L}_f - div_\mu(f)$

⁷in the strong sense

Hybrid Transfer Operators

Hybrid Frobenius Perron Operator

Definition

Let $\mathcal{H} = (M, f, S, \Delta)$ a hybrid system and let $\varphi_t^{\mathcal{H}}$ be the hybrid flow. Then the Frobenius Perron operator associated to \mathcal{H} is the semigroup of operators $P_t^{\mathcal{H}} : L^1(M) \to L^1(M)$, satisfying

$$\int_{A} P_{t}^{\mathcal{H}} h(x) d\mu(x) = \int_{\varphi_{-t}^{\mathcal{H}}(A)} h(x) d\mu(x), \forall \ A \in \mathcal{B}$$

Hybrid Frobenius Perron Operator

Definition

Let $\mathcal{H} = (M, f, S, \Delta)$ a hybrid system and let $\varphi_t^{\mathcal{H}}$ be the hybrid flow. Then the Frobenius Perron operator associated to \mathcal{H} is the semigroup of operators $P_t^{\mathcal{H}} : L^1(M) \to L^1(M)$, satisfying

$$\int_{\mathcal{A}} P_t^{\mathcal{H}} h(x) d\mu(x) = \int_{\varphi_{-t}^{\mathcal{H}}(\mathcal{A})} h(x) d\mu(x), \forall \ \mathcal{A} \in \mathcal{B}$$

21 / 55

Hybrid Frobenius Perron Operator

Definition

Let $\mathcal{H} = (M, f, S, \Delta)$ a hybrid system and let $\varphi_t^{\mathcal{H}}$ be the hybrid flow. Then the Frobenius Perron operator associated to \mathcal{H} is the semigroup of operators $P_t^{\mathcal{H}} : L^1(M) \to L^1(M)$, satisfying

$$\int_{\mathcal{A}} P_t^{\mathcal{H}} h(x) d\mu(x) = \int_{\varphi_{-t}^{\mathcal{H}}(\mathcal{A})} h(x) d\mu(x), \forall \ \mathcal{A} \in \mathcal{B}$$

Objective

Continuity equation for the hybrid system \iff infinitesimal generator of the hybrid transfer operator

Objective

Continuity equation for the hybrid system \iff infinitesimal generator of the hybrid transfer operator

Naive approach

Discrete + continuous = hybrid

$$\begin{cases} \partial_t u(t,x) + \nabla u(t,x) \cdot f(x) = -\operatorname{div}_{\mu}(f)u(t,x), & \text{if } x \notin \Delta(S) \\ u(t^+,x) = J^{-1}(\Delta^{-1}(x))u(t^-,\Delta^{-1}(x)) & \text{if } x \in \Delta(S) \\ \downarrow & \text{impact} & \text{before impact} \end{cases}$$

Challenges

Dimensionality

$$\blacktriangleright \Delta: S \to M, \ dim(S) = n - 1.$$

Challenges

Dimensionality

∆: S → M, dim(S) = n - 1.
Determinant of n - 1 × n matrix
Change of variables S = {x_n = 0}
⇒ Δ_{*} =

$$\begin{pmatrix} \partial_1 \Delta_1 & \partial_1 \Delta_2 & \dots & \partial_1 \Delta_n \\ & & \dots & \\ \partial_{n-1} \Delta_1 & \partial_{n-1} \Delta_2 & \dots & \partial_{n-1} \Delta_n \end{pmatrix}$$
Missing a row!
Challenges

Dimensionality

∆: S → M, dim(S) = n - 1.
Determinant of n - 1 × n matrix
Change of variables S = {x_n = 0}
⇒ Δ_{*} =

$$\begin{pmatrix} ∂_1 Δ_1 & ∂_1 Δ_2 & \dots & ∂_1 Δ_n \\ & & \dots & \\ ∂_{n-1} Δ_1 & ∂_{n-1} Δ_2 & \dots & ∂_{n-1} Δ_n \end{pmatrix}$$
Missing a row!

Fundamental

How does infinitesimal volume change when moving through S?

Fundamental challenge

• μ (n vectors) = volume of hypercube

Only n − 1 linearly independent tangent vectors available at y = Δ⁻¹(x) ∈ S

Requirements for the new direction

Choose: direction \tilde{v} & linear map such that

- $\blacktriangleright \{\tilde{v}, T_y S\} \text{ span } T_y M.$
- det(Δ) restricted to $T_y S$ and $\Delta_* T_y S = det(linear map)$

⁹Clark William and Bloch Anthony. "Invariant forms in hybrid and impact systems and a taming of Zeno". In: Arch. Rational Mech. Amal (2022). So Solution 2012 (2022).

Requirements for the new direction

Choose: direction \tilde{v} & linear map such that

► $\{\tilde{v}, T_y S\}$ span $T_y M$.

• det(Δ) restricted to $T_y S$ and $\Delta_* T_y S = det(linear map)$

Natural choice: the flow direction and the extended differential⁹

Definition

.

The extended differential Δ^f_* is the linear map : $T_y M \to T_x M$ defined by:

$$\begin{cases} \Delta_*^f(v) = \Delta_*(v) & \text{if } v \in T_y S \\ \Delta_*^f(v) = c \cdot f(\Delta(y)) & \text{if } v = c \cdot f(y) \in Span(f(y)) \end{cases}$$

The hybrid Jacobian: $J^f_\mu := \det(\Delta^f_*)$

Illustration

Natural decomposition of the tangent space

- $f_X \not\parallel S \implies$ decomposition exists
- No extra structure needed!

Natural decomposition of the tangent space

Check:

$$J_{\mu}^{f} = \begin{vmatrix} \partial_{1}\Delta_{1} & \dots & \partial_{1}\Delta_{n-1} \\ & \dots \\ \partial_{n-1}\Delta_{1} & \dots & \partial_{n-1}\Delta_{n-1} \end{vmatrix} = \\ \begin{vmatrix} \partial_{1}\Delta_{1} & \dots & \partial_{1}\Delta_{n-1} & \partial_{1}\Delta_{n} \\ & \dots \\ \partial_{n-1}\Delta_{1} & \dots & \partial_{n-1}\Delta_{n-1} & \partial_{2}\Delta_{n} \\ f^{1} & \dots & f^{n-1} & f_{n} \end{vmatrix}$$

27 / 55

Hybrid transfer operator

Theorem¹⁰

Let \mathcal{H} be a smooth hybrid dynamical system and suppose $|\Delta^{-1}(\{x\})|$ is finite $\forall x$. Additionally, let $\mu \in \Omega^n(M)$ be a reference volume-form and suppose that $J^f_{\mu} \neq 0$. Then, the hybrid transfer operator $u(t, x) = P^{\mathcal{H}}_t h(x)$ satisfies the following:

$$\begin{cases} \frac{\partial u}{\partial t} + du(f) = -u \operatorname{div}_{\mu}(f) & x \notin \Delta(S) \\ u(t^+, x) = \sum_{y \in \Delta^{-1}(x)} \frac{1}{J^f_{\mu}(\Delta) \circ \Delta^{-1}}(y) u(t^-, y) & x \in \Delta(S) \end{cases}$$

¹⁰ Et al. "A Study of the Long-Term Behavior of Hybrid Systems with Symmetries via Reduction and the Frobenius-Perron Operator". In: (20≩3). ⇒ ∽ <

APPLICATIONS

<ロ><一><一><一><一><一><一><一</td>29/55

The bouncing ball

1

• e.o.m.
$$\begin{cases} \dot{x} = \frac{1}{m}v\\ \dot{v} = -mg \end{cases}$$
• guard: $S = \{x = 0, v < 0\}.$
• reset: $\Delta(x, v) = (x, -c^2v), 0 < c \le 1.$

ヘロト 人間 とくほとくほど 2 30 / 55

The bouncing ball

The bouncing ball results (c = 1)

31 / 55

The bouncing ball comparison

t=10

32 / 55

An SIR model

$$\begin{cases} \dot{S} = \mu N - \frac{\beta SI}{N} - \mu S \\ \dot{I} = \frac{\beta SI}{N} - \gamma I - \mu I - \delta I \\ \dot{R} = \gamma I - \mu R \end{cases} \qquad \Delta = \begin{cases} S^+ = S^- \\ I^+ = (1 - f)I^- \\ R^+ = R^- + fI^- \end{cases}$$

- $\beta = \text{contact frequency}, \gamma = \text{recovery rate}$
- $\mu = birth/death$ rate, $\delta = mortality$ due to disease

SIR model results

34 / 55

Bacteria in competition

- Human gut, soil \rightarrow enhances stability¹¹
- Toxin production after threshold is reached.

src:Zimina M.I. et al. "Identification and studying of the biochemical properties of lactobacillus strains Identification and studying of the biochemical properties of lactobacillus strains". In: Life Science Journal 11.11 (January 2014), pp. 338–341

¹¹Leonor García-Bayon and Laurie E. Comstock. "Bacterial antagonism in host-associated microbial communities". In: *Science* 361 (2018). (E) (E) (E) (C)

Bacteria in competition

- Human gut, soil \rightarrow enhances stability¹¹
- Toxin production after threshold is reached.

$$\dot{k} = \begin{cases} Rk \left(1 - \frac{k+s}{N} \right), & \text{if } \alpha s < k \\ (R - C)k \left(1 - \frac{k+s}{N} \right), & \text{if } s\alpha \ge k \end{cases}$$

$$\dot{s} = \begin{cases} Rs \left(1 - \frac{k+s}{N}\right), & \text{if } s\alpha < k \\ Rs \left(1 - \frac{k+s}{N}\right) - Aks, & \text{if } s\alpha \ge k \end{cases}$$

R - growth rate, C - cost for toxin production, N - carrying capacity, A - killing rate of the toxin, α - detection threshold

¹¹García-Bayon and Comstock, "Bacterial antagonism in host-associated microbial communities".

Bacteria in competition results

36 / 55

FUTURE RESEARCH DIRECTIONS

Better numerical methods

Current state of the solver:

- Semi Lagrangian discretization
- Left neighbour interpolation
- Characteristics out of the grid ⇒ run until it goes back inside the grid, or until time 0 is reached

Better numerical methods

Current state of the solver:

- Semi Lagrangian discretization
- Left neighbour interpolation
- ► Characteristics out of the grid ⇒ run until it goes back inside the grid, or until time 0 is reached

イロト イヨト イヨト

Better numerical methods

Finite differences - spacing next to the discontinuity¹²

- Discontinuous Galerkin method¹³
- Finite volumes¹⁴

¹³Miloslav Feistauer Vít Dolejší. *Discontinuous Galerkin Discontinuous Galerkin Method*. Springer Series in Computational Mathematics, 2010.

¹²Hogarth W. et al. "A comparative study of finite differences methods for solving the one dimensional transport equation with an initial boundary value discontinuity". In: *Computers Math. Applic* 20.11 (1990).

¹⁴Aymard Benjamin et al. "A numerical method for transport equations with discontinuity flux functions: application to mathematical modeling of cell dynamics". In: *SIAM J. Sci. Comput* 36 (2013).

Stochastic dynamics, deterministic transition

$$\begin{cases} dX_t = f(X_t, t)dt + \sigma(X_t, t)dW_t, & \text{if } X_t \notin S \\ X_t = \Delta(X_t), & \text{if } X_t \in S \end{cases}$$

Focker Plank equation instead of continuity

$$\frac{\partial}{\partial t}p + \frac{\partial}{\partial x}(\mu p) - \frac{\partial^2}{\partial x}\left(\frac{\sigma^2}{2}p\right) = 0$$

Issue: hybrid jacobian

Example

•
$$f(x) = \sin(x), \ \sigma(x) = x, \ \Delta(x) = -x, \ S = \{x = \pm 0.5\}$$

Example

•
$$f(x) = \sin(x), \ \sigma(x) = x, \ \Delta(x) = -x, \ S = \{x = \pm 0.5\}$$

Deterministic dynamics, stochastic impact surface
 Teleportation: transition happens at any point with probability λ.

Deterministic dynamics, stochastic impact surface

- Teleportation: transition happens at any point with probability λ.
- Example: $\dot{x} = x$ transition to $\dot{x} = -x$ with probability 0.4.

Deterministic dynamics, stochastic impact surface

- Teleportation: transition happens at any point with probability λ.
- Example: $\dot{x} = x$ transition to $\dot{x} = -x$ with probability 0.4.

- Teleportation after time $t \approx \text{Poisson}(\lambda)$
- Stochastic dynamics, stochastic transition surface

Introduce controls

Thank you for your attention

Publications:

- ~, Aden Shaw, Robi Huq, Kaito Iwasaki, Dora Kassabova and William Clark A Study of the Long-Term Behavior of Hybrid Systems with Symmetries via Reduction and the Frobenius-Perron Operator arXiv:2309.12569 (2023).
- ~ and William Clark How do we walk? Using hybrid holonomy to approximate non-holonomic systems 2022 IEEE 61st Conference on Decision and Control (CDC) 2022.
- ~, Max Ruth, Dora Kassabova, William Clark Optimal Control of Nonholonomic Systems via Magnetic Fields IEEE Control Systems Letters, 7, 793-798, 2022.

Thanks for listening

- William Clark and ~ Optimality of Zeno Executions in Hybrid Systems
 2023 American Control Conference (ACC), 3983-3988, 2023.
- ~, Mark Walth, Robert Stephany, Gabriella Torres Nothaft, Arnaldo Rodriguez-Gonzalez, William Clark Learning the Delay Using Neural Delay Differential Equations arXiv:2304.01329, 2023. poyyguyfo
- William Clark, ~ and Andrew J. Graven A Geometric Approach to Optimal Control of Hybrid and Impulsive Systems arXiv:2111.11645, 2021.
- William Clark and ~ Optimal control of hybrid systems via hybrid lagrangian submanifolds IFAC-PapersOnLine 54, 88-93, 2021.

SUPPLEMENTARY SLIDES

Lebesque measure on a manifold

(M,g) (paracompact) Riemannian manifold Volume form¹⁵ $dV_g \in \Omega^n(M)$ is the unique form such that

$$dV_g = \sqrt{det(g_{ij})} dx_1 \dots dx_n$$

Equivalently $dV_g = \epsilon^1 \wedge \cdots \wedge \epsilon^n$ for $\{\epsilon_i\}$ oriented orthonormal coframe on T^*M .

Lebesque measure

 $S \subset M$ measurable if $x(S \cap U) \in \mathbb{R}^n$ measurable $\forall (U, x)$ chart.

$$\lambda_{x}^{M}(S \cap U) = \int_{x(S \cap U)} \sqrt{\det(g(\partial_{x_{i}}, \partial_{x_{j}}))} d\lambda$$

Determinants¹⁶

M and *N* be *n*-dimensional manifolds $\mu \in \Omega^n(M)$ and $\eta \in \Omega^n(N)$. Let $F: TM \to TN$ be linear map. Then the determinant of *F* with respect to μ and η is defined to be the unique $C^{\infty}(M)$ function such that

$$\det_{\mu o \eta}(F) \cdot \mu = F^* \eta$$

 $\det_{\mu o \eta}(F) = rac{dF^* \eta}{d\mu}$

 Continuity equation precise statement¹⁷

Lemma

Let f be a Borel vector field satisfying

$$\int_{0}^{T} sup_{B}|f| + Lip(f, B)dt \leq \infty$$
$$\int_{0}^{T} \int_{M} |f(x)|d\mu(x)dt \leq \infty$$

and let ϕ_t be the maximal solution of $\dot{x} = f(x)(*)$. Then $\rho_t = \phi_t \# \rho$ is a solution to $\partial_t \rho_t + \nabla(f \rho_t) = 0$ in the interval $(0, \tau(x) - \epsilon) \forall \epsilon > 0$ where $\tau(x) =$ maximal time on which solutions to (*) starting from x are defined.

¹⁷Luigi, Nicola, and Giuseppe, *Gradient Flows in Metric Spaces and in the Space of Probability Measures.*

The divergence of a vector field

Let $\phi_t : M \to M$ be the flow of a vector field $f : M \to TM$. Let $\mu \in \Omega^n(M)$. Consider

 $\lim_{t\to 0}\phi_t\#\mu$

This is a measure in $\Omega^n(M)$. Hence $\exists div_{\mu}(f) : M \to M$ such that:

$$\lim_{t\to 0}\phi_t\#\mu=\operatorname{div}_\mu(f)\mu$$

In coordinates with $\mu = dx_1 \wedge \cdots \wedge dx_n$, $div_{\mu}(f) = \sum_{i=1}^n \frac{\partial f}{\partial x_i}$

<ロ><回><一><一><一><一><一><一</td>50/55
The augmented differential and the hybrid Jacobian¹⁹

Definition

The hybrid Jacobian is the unique function $J_{\mu}(\Delta): S \to \mathbb{R}$ such that

 $\Delta^* \iota^*_{\Delta(S)} i_f \alpha = J_{\mu}(\Delta) \iota^*_S i_f \alpha$

 $\frac{\mathsf{Theorem}^{18}}{\det_{\mu \to \mu} \Delta^{f}_{*}} = J_{\mu}(f)$

¹⁸ Et al., "A Study of the Long-Term Behavior of Hybrid Systems with Symmetries via Reduction and the Frobenius-Perron Operator".

¹⁹William and Anthony, "Invariant forms in hybrid and impact systems and a taming of Zeno".

Hybrid invariant differential forms²⁰

Assume \mathcal{H} is a hybrid system and $\alpha \in \Omega^k(M)$.

- A differential form is invariant of $(\varphi_t^{\mathcal{H}})^* \alpha = \alpha$.
- ► This is equivalent to $\alpha_{\Delta(y)}(\Delta_*^f v_1, \ldots, \Delta_*^f v_n) = \alpha_y(v_1, \ldots, v_n)$
- Three conditions have to be satisfied:

$$\begin{cases} \mathcal{L}_{f}(\alpha) = 0\\ \Delta^{*}\iota_{\Delta(S)}^{*}\alpha = \iota_{S}^{*}\alpha & \leftarrow \text{ specular condition}\\ \Delta^{*}\iota_{\Delta(S)}^{*}i_{f}\alpha = \iota_{S}^{*}i_{f}\alpha & \leftarrow \text{ energy condition} \end{cases}$$

²⁰William and Anthony, "Invariant forms in hybrid and impact systems and a taming of Zeno".

Extension to non-invertible maps

The hybrid transfer PDE equation

The bouncing ball

$$\begin{cases}
\frac{\partial u}{\partial t} + \frac{v}{m} \frac{\partial u}{\partial x} - mg \frac{\partial u}{\partial v} = 0, & \text{for } x \neq 0; \\
u(t^+, 0, v) = u(t^-, 0, -v), & \text{otherwise.} \end{cases}$$

The SIR model

$$\begin{aligned} \frac{\partial u}{\partial t} + (\mu - \mu s - (\beta - \delta)si)\frac{\partial u}{\partial s} + (\beta si + \delta i^2 - (\gamma + \mu + \delta)i)\frac{\partial u}{\partial i} \\ &= (2\mu - \beta(s - i) + \gamma + \delta - 3\delta i) u, \\ u(t^+, s, \alpha(1 - f)) = \\ &= \frac{-\beta\alpha s + \delta\alpha^2 - (g + \mu + \delta)\alpha}{-\beta\alpha s(1 - f) + \delta\alpha^2(1 - f)^2 - (g + \mu + \delta)\alpha(1 - f)}u(t^-, s, \alpha). \end{aligned}$$

The hybrid jacobian for mechanical systems

Theorem $(^{21})$

Let $H : T^*M \to \mathbb{R}$ be a natural Hamiltonian. Let ω be the symplectic form on T^*M , and assume Δ is the impact map coming from the corner conditions. Assume moreover that S is the 0 level set of $h : M \to \mathbb{R}$.

$$\Delta = \left(x, p - (1 + c^2) \frac{p(\nabla h)}{dh(\nabla h)} dh\right)$$

Then the hybrid Jacobian is $J_{\omega^n}f = c^4$

²¹ Et al., "A Study of the Long-Term Behavior of Hybrid Systems with Symmetries via Reduction and the Frobenius-Perron Operator".