

Embeddings in the 2-Wasserstein space

Maria Oprea, MOPTA August, 2024

Joint work with:

Jonah Botvinick-Greenhouse Yunan Yang

Goenka Family Assistant Professor in Mathematics¹

Mathematics¹

¹Cornell University

PhD candidate at the Center for Applied

Romit Maulik

Assistant Professor at Penn State College of Information Sciences and Technologies

Sea surface temperature (NOAA)

Takens embedding theorem: there is an embedding between the true attractor and the delay reconstruction

Notion of "sameness"

- Notion of "sameness"
- Diffeomorphism that preserves the differential structure

- Notion of "sameness"
- Diffeomorphism that preserves the differential structure

<u>Definition</u>: $f: M \to N$ is an embedding if: - f is bijective onto f(M)-f is differentiable - Df_x is injective $\forall x \in M$

- Notion of "sameness"
- Diffeomorphism that preserves the differential structure

<u>Definition</u>: $f: M \to N$ is an embedding if: - f is bijective onto f(M)- f is differentiable - Df_x is injective $\forall x \in M$

- Notion of "sameness"
- Diffeomorphism that preserves the differential structure

<u>Definition</u>: $f: M \to N$ is an embedding if: - f is bijective onto f(M)- f is differentiable - Df_x is injective $\forall x \in M$

- Notion of "sameness"
- Diffeomorphism that preserves the differential structure

<u>Definition</u>: $f: M \to N$ is an embedding if: - f is bijective onto f(M)- f is differentiable - Df_x is injective $\forall x \in M$

- Notion of "sameness"
- Diffeomorphism that preserves the differential structure
- **Definition:** $f: M \to N$ is an embedding if: - f is bijective onto f(M)- f is differentiable - Df_x is injective $\forall x \in M$
- Goal: learn the embedding from data

Learning paradigm

• Given samples $\{x_i, y_i = f(x_i)\}_i$ learn f

Learning paradigm

• Given samples $\{x_i, y_i = f(x_i)\}_i$ learn f

• For Takens: long trajectory $\{x_{t_i}, \Phi(x_{t_i})\}$

Takens requires clean data, deterministic setup.

Clean

- Takens requires clean data, deterministic setup.
- Chaos + Uncertainty in the initial position $\rho_0 \implies \phi_t \# \rho_0$

Clean

- Takens requires clean data, deterministic setup.
- Chaos + Uncertainty in the initial position $\rho_0 \implies \phi_t \# \rho_0$

Clean

- Takens requires clean data, deterministic setup.
- Chaos + Uncertainty in the initial position $\rho_0 \implies \phi_t \# \rho_0$
- Stochastic dynamics $\rho_t = law(X_t)$

Clean

- Takens requires clean data, deterministic setup.
- Chaos + Uncertainty in the initial positi
- Stochastic dynamics $\rho_t = law(X_t)$
- Noisy data $\tilde{x}_t = x_t + \mathcal{N}(0,1), \rho_t = \delta_{x_t} * \mathcal{N}(0,1)$

ion
$$\rho_0 \implies \phi_t \# \rho_0$$

Clean

- Takens requires clean data, deterministic setup.
- Chaos + Uncertainty in the initial positi
- Stochastic dynamics $\rho_t = law(X_t)$
- Noisy data $\tilde{x}_t = x_t + \mathcal{N}(0,1), \rho_t = \delta_{x_t} * \mathcal{N}(0,1)$
- Tracking information might not be available

Noisy

ion
$$\rho_0 \implies \phi_t \# \rho_0$$

Clean

- Pairs $\{x_i, y_i\}$ where $x_i \sim \rho_x$ and $y_i \sim \rho_y$

• Point-wise reconstruction: $L(\theta) = \frac{1}{N} \sum_{i} ||f_{\theta}(x_i) - y_i||_2^2$

- Pairs $\{x_i, y_i\}$ where $x_i \sim \rho_x$ and $y_i \sim \rho_y$

• Point-wise reconstruction: $L(\theta) = \frac{1}{N} \sum_{i} ||f_{\theta}(x_i) - y_i||_2^2$

• Pairs $\{x_i, y_i\}$ where $x_i \sim \rho_x$ and $y_i \sim \rho_y$

•
$$L_{true}(\theta) = \frac{1}{N} \sum_{i} ||f_{\theta}(x_i) - f_{true}(x_i)||$$

• Point-wise reconstruction: $L(\theta) = \frac{1}{N} \sum_{i} ||f_{\theta}(x_i) - y_i||_2^2$ $(z_i) \|_2^2$

• Pairs $\{x_i, y_i\}$ where $x_i \sim \rho_x$ and $y_i \sim \rho_y$

•
$$L_{true}(\theta) = \frac{1}{N} \sum_{i} ||f_{\theta}(x_i) - f_{true}(x_i)||$$

• Point-wise reconstruction: $L(\theta) = \frac{1}{N} \sum_{i} ||f_{\theta}(x_i) - y_i||_2^2$ $(z_i) \|_2^2$

• Pairs $\{x_i, y_i\}$ where $x_i \sim \rho_x$ and $y_i \sim \rho_y$

•
$$L_{true}(\theta) = \frac{1}{N} \sum_{i} ||f_{\theta}(x_i) - f_{true}(x_i)||$$

• Point-wise reconstruction: $L(\theta) = \frac{1}{N} \sum_{i=1}^{N} ||f_{\theta}(x_i) - y_i||_2^2$ $(z_i) \|_{2}^{2}$

• Pairs $\{x_i, y_i\}$ where $x_i \sim \rho_x$ and $y_i \sim \rho_y$

•
$$L_{true}(\theta) = \frac{1}{N} \sum_{i} ||f_{\theta}(x_i) - f_{true}(x_i)||$$

• Point-wise reconstruction: $L(\theta) = \frac{1}{N} \sum_{i=1}^{N} ||f_{\theta}(x_i) - y_i||_2^2$ $(z_i) \|_{2}^{2}$

• Pairs $\{x_i, y_i\}$ where $x_i \sim \rho_x$ and $y_i \sim \rho_y$

•
$$L_{true}(\theta) = \frac{1}{N} \sum_{i} ||f_{\theta}(x_i) - f_{true}(x_i)||$$

• Point-wise reconstruction: $L(\theta) = \frac{1}{N} \sum_{i=1}^{N} ||f_{\theta}(x_i) - y_i||_2^2$ $(z_i) \|_{2}^{2}$

• Sparse and noisy data can be represented as $\{\rho_x^i, \rho_y^i\}$

• Sparse and noisy data can be represented as $\{\rho_x^l, \rho_v^l\}$ • Optimize $\tilde{L}(\theta) = \frac{1}{K} \sum_{i=1}^{K} \mathscr{D}(F_{\theta}(\rho_x^i), \rho_y^i) \text{ for } F_{\theta} : \mathscr{P}_2(M) \to \mathscr{P}_2(N)$

• Sparse and noisy data can be represented as $\{\rho_x^l, \rho_y^l\}$ • Optimize $\tilde{L}(\theta) = \frac{1}{K} \sum_{i=1}^{K} \mathscr{D}(F_{\theta}(\rho_x^i), \rho_y^i) \text{ for } F_{\theta} : \mathscr{P}_2(M) \to \mathscr{P}_2(N)$

If we can show:

- Sparse and noisy data can be represented as $\{\rho_x^l, \rho_v^l\}$ • Optimize $\tilde{L}(\theta) = \frac{1}{K} \sum_{K} \mathscr{D}(F_{\theta}(\rho_x^i), \rho_y^i) \text{ for } F_{\theta} : \mathscr{P}_2(M) \to \mathscr{P}_2(N)$
- If we can show:

 $ightarrow F_{A}^{*}$ is an embedding

- Sparse and noisy data can be represented as $\{\rho_x^l, \rho_v^l\}$ • Optimize $\tilde{L}(\theta) = \frac{1}{K} \sum_{K} \mathscr{D}(F_{\theta}(\rho_x^i), \rho_y^i)$ for $F_{\theta} : \mathscr{P}_2(M) \to \mathscr{P}_2(N)$
- If we can show:
 - $ightarrow F_{A}^{*}$ is an embedding $ightarrow F_{\Delta}^*$ is directly related to f_{true}

- Sparse and noisy data can be represented as $\{\rho_x^l, \rho_v^l\}$ • Optimize $\tilde{L}(\theta) = \frac{1}{K} \sum_{K} \mathscr{D}(F_{\theta}(\rho_x^i), \rho_y^i)$ for $F_{\theta} : \mathscr{P}_2(M) \to \mathscr{P}_2(N)$ i=1
- If we can show:
 - $ightarrow F_{A}^{*}$ is an embedding $ightarrow F_{\Delta}^*$ is directly related to f_{true} $ightarrow F_{A}^{*}$ is robuster to noise

- Sparse and noisy data can be represented as $\{\rho_x^l, \rho_v^l\}$ • Optimize $\tilde{L}(\theta) = \frac{1}{K} \sum_{K} \mathscr{D}(F_{\theta}(\rho_x^i), \rho_y^i)$ for $F_{\theta} : \mathscr{P}_2(M) \to \mathscr{P}_2(N)$ i=1
- If we can show:
 - $ightarrow F_{A}^{*}$ is an embedding $ightarrow F_A^*$ is directly related to f_{true} $ightarrow F_{\rho}^*$ is robuster to noise

What is an embedding in $\mathscr{P}_{2}(M)$?

Eulerian framework - Optimal transport

 ρ_0

 $\mathscr{P}_{2}(M) = \left\{ \rho | \int |x|^{2} \rho < \infty \right\}$

Geodesic!

$$W_{2}^{2}(\rho_{0},\rho_{1}) = \min_{(\rho_{t},v_{t})} \int_{0}^{1} \int ||v_{t}||^{2} d\mu_{t} dt \left| \partial_{t}\rho_{t} + \nabla \cdot (\rho_{t},v_{t}) \nabla \cdot (\rho_{t},v_{t}) \right|^{2} d\mu_{t} dt \left| \partial_{t}\rho_{t} + \nabla \cdot (\rho_{t},v_{t}) \right|^{2} d\mu_{t} dt \left| \partial_{t}\rho_{t} + \nabla \cdot (\rho_{t},v_{t}) \nabla \cdot (\rho_{t},v_{t})$$

 $T_{\rho_0} \mathscr{P}(M)$

 $(\rho_t v_t) = 0$

nects $\rho_0 \& \rho_1$ and has velocity $v_t \iff \dot{x}_t = v(x)$

Theorem: Let $f: M \to N$ be an embedding and denote by $F = f\# : \mathscr{P}_2(M) \to \mathscr{P}_2(N)$ its push-forward. Then F is an embedding with respect to the Wasserstein geometry.

<u>Theorem</u>: Let $f: M \to N$ be an embedding and denote by to the Wasserstein geometry.

$F = f^{\#}: \mathscr{P}_2(M) \to \mathscr{P}_2(N)$ its push-forward. Then F is an embedding with respect

<u>Theorem</u>: Let $f: M \to N$ be an embedding and denote by to the Wasserstein geometry.

$F = f \# : \mathscr{P}_2(M) \to \mathscr{P}_2(N)$ its push-forward. Then F is an embedding with respect

• Optimize $\tilde{L}(\theta) = \frac{1}{K} \sum_{i=1}^{K} \mathscr{D}(F_{\theta}(\rho_x^i), \rho_y^i) \text{ for } F_{\theta} : \mathscr{P}_2(M) \to \mathscr{P}_2(N)$

• Optimize $\tilde{L}(\theta) = \frac{1}{K} \sum_{i=1}^{K} \mathscr{D}(F_{\theta}(\rho_x^i), \rho_y^i) \text{ for } F_{\theta} : \mathscr{P}_2(M) \to \mathscr{P}_2(N)$ $f_{\theta} #$

• Optimize $\tilde{L}(\theta) = \frac{1}{K} \sum_{i=1}^{K} \mathscr{D}(F_{\theta}(\rho_x^i), \rho_y^i) \text{ for } F_{\theta} : \mathscr{P}_2(M) \to \mathscr{P}_2(N)$ $f_{\theta} # \qquad f_{\theta} : M \to N$

• Optimize $\tilde{L}(\theta) = \frac{1}{K} \sum_{i=1}^{K} \mathscr{D}(F_{\theta}(\rho_x^i), \rho_y^i) \text{ for } F_{\theta} : \mathscr{P}_2(M) \to \mathscr{P}_2(N)$ $f_{\theta} # \qquad f_{\theta} : M \to N$

• $\tilde{L}_{true}(\theta) = \frac{1}{K} \sum_{i} \mathscr{D}(f_{\theta} \# \rho_x^i, f_{true} \# \rho_x^i)$ has $f_{\theta}^* = f_{true}$ as a minimizer

• Optimize $\tilde{L}(\theta) = \frac{1}{K} \sum_{i=1}^{K} \mathscr{D}(F_{\theta}(\rho_x^i), \rho_y^i) \text{ for } F_{\theta} : \mathscr{P}_2(M) \to \mathscr{P}_2(N)$ $f_{\theta} # \qquad f_{\theta} : M \to N$

• $\tilde{L}_{true}(\theta) = \frac{1}{K} \sum_{i} \mathcal{D}(f_{\theta} \# \rho_x^i, f_{true} \# \rho_x^i)$ has $f_{\theta}^* = f_{true}$ as a minimizer

 $\sim F_{A}^{*} = f_{true}^{*}$ in the noise free setting

• Optimize $\tilde{L}(\theta) = \frac{1}{K} \sum_{i=1}^{K} \mathscr{D}(F_{\theta}(\rho_x^i), \rho_y^i) \text{ for } F_{\theta} : \mathscr{P}_2(M) \to \mathscr{P}_2(N)$ $f_{\theta} # \qquad f_{\theta} : M \to N$

• $\tilde{L}_{true}(\theta) = \frac{1}{K} \sum_{i} \mathcal{D}(f_{\theta} \# \rho_x^i, f_{true} \# \rho_x^i)$ has $f_{\theta}^* = f_{true}$ as a minimizer

• When $\rho_x^i = \delta_{x_i}$ then $\tilde{L}(\theta) = L(\theta) \implies$ generalization of the point-wise setting

 \sim $F_{A}^{*} = f_{true}^{*}$ in the noise free setting

Pointwise

• $x_i \sim \rho_x^i$, $y_i \sim \rho_y^i$

Measure-based

• ρ_x^i, ρ_y^i

Pointwise

• $x_i \sim \rho_x^i, y_i \sim \rho_y^i$

• Measurements are on average $\mathbb{E}_{\rho_x^i,\rho_y^i} \|f_{true}(x_i) - y_i\|_2^2 \text{ away.}$

Measure-based

- ρ_x^i, ρ_y^i
- Densities are $W_2^2(f_{true} \# \rho_x^i, \rho_y^i)$ away.

Pointwise

• $x_i \sim \rho_x^i$, $y_i \sim \rho_y^i$

• Measurements are on average $\mathbb{E}_{\rho_x^i,\rho_y^i} \|f_{true}(x_i) - y_i\|_2^2 \text{ away.}$

Measure-based

Densities are $W_2^2(f_{true} \# \rho_x^i, \rho_y^i)$ away.

Pointwise

•
$$x_i \sim \rho_x^i$$
, $y_i \sim \rho_y^i$

• Measurements are on average $\mathbb{E}_{\rho_x^i, \rho_y^i} \|f_{true}(x_i) - y_i\|_2^2 \text{ away.}$

Solutions can be highly oscillatory

Measure-based

Densities are $W_2^2(f_{true} \# \rho_x^i, \rho_y^i)$ away.

Pointwise

•
$$x_i \sim \rho_x^i$$
, $y_i \sim \rho_y^i$

• Measurements are on average $\mathbb{E}_{\rho_x^i, \rho_y^i} \|f_{true}(x_i) - y_i\|_2^2 \text{ away.}$

Solutions can be highly oscillatory

Measure-based

Densities are $W_2^2(f_{true} \# \rho_x^i, \rho_y^i)$ away.

Pointwise

•
$$x_i \sim \rho_x^i$$
, $y_i \sim \rho_y^i$

Measurements are on average $\mathbb{E}_{\rho_x^i, \rho_v^i} \|f_{true}(x_i) - y_i\|_2^2$ away.

Solutions can be highly oscillatory

Measure-based

- $\bullet \ \rho_x^i, \rho_v^i$
- Densities are $W_2^2(f_{true} \# \rho_x^i, \rho_y^i)$ away.
 - Allows wiggle room while keeping the loss low
 - NN spectral bias \implies implicit regularization

Pointwise

•
$$x_i \sim \rho_x^i$$
, $y_i \sim \rho_y^i$

Measurements are on average $\mathbb{E}_{\rho_x^i, \rho_v^i} \|f_{true}(x_i) - y_i\|_2^2$ away.

Solutions can be highly oscillatory

Measure-based

- $\bullet \ \rho_x^i, \rho_v^i$
- Densities are $W_2^2(f_{true} \# \rho_x^i, \rho_y^i)$ away.
 - Allows wiggle room while keeping the loss low
 - NN spectral bias \implies implicit regularization

Numerical Results

Ground Truth

Lorentz system

Measure-Based Reconstruction

Pointwise Reconstruction

Measure-Based Reconstruction

Pointwise Reconstruction 30 20 10 0 20 20 10 __10 ⁰ X 10 *y*⁰ -10 -20 -20

Ζ

Ground Truth: Testing Week 550

Pointwise Reconstruction: Testing Week 425

Measure Reconstruction: Testing Week 550

Pointwise Reconstruction: Testing Week 550

- 0

L 0

Thank you for your attention!

References: ¹ Floris Takens. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Warwick 1980, pages 366-381. Springer, 1981

²Luigi Ambrosio, Nicola Gigli, and Giuseppe Savare. Gradient Flows in Metric Spaces and in the Space of Probability Measures. Birkhaeuser Verlag, 2005.

³Jonah Botvinick-Greenhouse, Maria Oprea, Yunan Yang and Romit Maulik, Measure-Theoretic Takens' Time-Delay Embedding: Analysis and Application, in preparation, 2024

Contact me: mao237@cornell.edu

Supplemental slides

Transform trajectory data into measure data

Supplemental slides

Transform trajectory data into measure data

• Partition domain into $\{C_i\}_{i=1}^M$

• Empirical distribution conditioned on the cell $\mu_i \sim \sum \delta_{x_i}$

• As diameter of $C_i \rightarrow 0$ we obtain point wise reconstruction

 $x_i \in C_i$

Supplemental slides

Transform trajectory data into measure data

• Partition domain into $\{C_i\}_{i=1}^M$

• Empirical distribution conditioned on the cell $\mu_i \sim \sum \delta_{x_i}$

• As diameter of $C_i \rightarrow 0$ we obtain point wise reconstruction

Works with different data assumptions

-15 -20 $\int_{-5}^{0} \int_{-5}^{5} 10^{15} 20$ $\chi(t - \tau)$ traj $\sqrt[9]{-20}^{-10}$ 20

 $x_i \in C_i$

