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Notation

Notation Meaning

M n dimensional manifold

f vector field f : M → TM with flow ϕt

S the impact surface S ⊂ M, codimension 1

∆ discrete map / the impact/reset map ∆ : S → M

µ reference volume form/reference measure on M

ρ arbitrary measure on M

h the density of measure ρ with respect to µ, h : M → R
P(M) all measures on M

Ωn(M) all top/volume forms on M
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Continuous vs. discrete dynamical systems

Continuous

▶ d
ds x(s)

∣∣∣
s=t

= f (x(t))

▶ ϕt(x) = x(t),
ϕ : R×M → M

M

f (x)x

Discrete

▶ xn+1 = ∆(xn),∆ : M → M

▶ ϕk(x) = ∆k(x)

M ∆

∆

xn

xn+ 1

∆
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Hybrid systems

▶ H = (M, f ,S ,∆), f ∦ S

S

∆(S)

x

y

∆(x)

∆(y)

{
ẋ = f (x), if x /∈ S
x+ = ∆(x−), if x ∈ S
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Motivation for hybrid framework

▶ Collisions, state transitions, discontinuities, interventions,
biological phenomena, robotics

v1

v2

v2

v1

f = {ẋ = v , v̇ = 0}

S = {x1 = x2}

∆(x , (v1, v2)) = (x , (v2, v1))
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Motivation for hybrid framework

▶ Collisions, state transitions, discontinuities, interventions,
biological phenomena, robotics

src:http://www.focus.org.uk/proton neutron.php
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Motivation for hybrid framework

▶ Collisions, state transitions1 , discontinuities, interventions,
biological phenomena, robotics

src: https://geodiode.com/biomes/savannah

1Scheffer M. and Carpenter S.R. “Catastrophic regime shifts in ecosystems:
linking theory to observation”. In: Trends in Ecology and Evolution 18 (2003).
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Motivation for hybrid framework

▶ Collisions, state transitions, discontinuities, interventions,
biological phenomena, robotics

src: https://www.seafoodsource.com/ src: https://doi.org/10.3390/act11030075
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Lagrangian vs Eulerian perspective

Particles =⇒ densities.

Lagrangian

▶ Precision/ accuracy

▶ Small number of
simulations, low dimension

▶ Solve an ODE / SDE to
obtain the trajectory

Eulerian

▶ Ensemble of trajectories,
many simulations

▶ Average behaviour

▶ No sensitive dependence on
initial conditions

▶ Solve a PDE to obtain the
evolution of a density

Ex: modelling aerosols though the human respiratory system2

2Saidi M. S. et al. “Comparison between Lagrangian and Eulerian
approaches in predicting motion of micron-sized particles in laminar flows”. In:
Atmospheric Environment 89 (2014).
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Evolution of measures

Continuous

▶ ϕt(x) = x(t),
ϕ : R×M → M

M

ϕt#

▶ ρ 7→ ϕt#ρ

Discrete

▶ ϕk(x) = ∆k(x)

M

∆#

▶ ρ 7→ ∆#ρ
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Measures vs volume forms on a manifold

”Volume form = absolutely continuous*, infinitesimal measure”

▶ ρ ∈ Ωn(M) ▶ ρ ∈ P(M)

v1

v2

v3

x

R

▶ Vol = ρx(v1, v2, v3)

▶ ρ = hµ

▶ In coordinates:
µ = dx1 . . . dxn

▶ Vol = ρ(R)

▶ ρ << µ =⇒ ρ = hµ,
h = dρ

dµ

▶ In coordinates: µ = Leb
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The Frobenius-Perron operator
(M,B, µ) measure space and ∆ : M → M nonsingular.

Discrete3

The unique linear operator P : L1(M)→ L1(M) defined by∫
A
Ph(x)dµ(x) =

∫
∆−1(A)

h(x)dµ(x), ∀ A ∈ B

(M, µ)
∆−1(A)

A

3Lasota and Mackey. Chaos, Fractals and Noise. Springer, 1994.
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The Frobenius-Perron operator
(M,B, µ) measure space and ∆ : M → M nonsingular.

Discrete3

The unique linear operator P : L1(M)→ L1(M) defined by∫
A
Ph(x)dµ(x) =

∫
∆−1(A)

h(x)dµ(x), ∀ A ∈ B

(M, µ)

f

∆−1(A)

A

Pf

3Lasota and Mackey, Chaos, Fractals and Noise.
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The Frobenius-Perron operator

ẋ = f (x) with flow ϕt .

Continuous
The semigroup of transfer operators Pt : L

1(M)→ L1(M) defined
by: ∫

A
Pt(f )dµ(x) =

∫
ϕ−t(A)

f (x)dµ(x)

backwards in time
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Motivation

▶ Nonlinear finite dimensional → linear infinite dimensional

▶ Dominant eigenfunctions of Pt is the invariant densities4

▶ Frobenius Perron = dual of Koopman

▶ Study of long term behaviour.

Example

M = [0, 1], ∆(x) = 4x(1− x), h(x) = 1

4Lasota and Mackey, Chaos, Fractals and Noise.
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Motivation

▶ Eigenfunctions of Pt are invariant densities5

▶ Frobenius Perron = dual of Koopman

▶ Study of long term behaviour.

Example

▶ M = [0, 1]

▶ ∆(x) = 4x(1− x)

▶ h(x) = 1

Invariant density
hinv = 1

πx
√
1−x

5Lasota and Mackey, Chaos, Fractals and Noise.
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The continuity equation

Goal: Obtain an equation for the evolution of h.

Discrete
Fix measure ρ = hµ

▶ Let u(k, x) = Pkh(x)

▶ Change variables
∫
A Ph(x)dµ(x) =

∫
∆−1(A) h(x)dµ(x) =⇒

Ph(x) =
∑

y∈∆−1(x)

h(y)J−1(y)

determinant of the inverse of the Jacobian matrix (∆∗)ij =
∂∆i
∂xj

▶ u(k , x) =
∑

y∈∆−1(x) u(k − 1, y)J−1(y)
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The continuity equation

Continuous
▶ Fix initial h and define u(t, x) = Pth(x) = density of

ρt = ϕt#ρ

▶ Goal: equation for u.

Lemma
If f ”nice enough”6 then ρt = ϕt#ρ satisfies the equation

∂ρt
∂t

+∇(f ρt) = 0 (1)

in the weak sense. Conversely, any solution of (1) can be written
as ρt = ϕt#ρ for some flow ϕt .

6Ambrosio Luigi, Gigli Nicola, and Savaré Giuseppe. Gradient Flows in
Metric Spaces and in the Space of Probability Measures. Birkhäuser Verlag,
2005.
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The continuity equation

Continuous
▶ Fix initial h and define u(t, x) = Pth(x) = density of

ρt = ϕt#ρ

▶ Goal: equation for u.

How does the density evolve?

▶ ρt = u(t, x)µ & product rule

∂u

∂t
+ du(f ) + divµ(f )u = 0 (2)

⟨∇u, f ⟩ = Lf u = how much
the density changes due to
the flow.

Lf µ = rate of expansion of a
unit volume as it goes around
the flow
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The infinitesimal generator8

Define A : D(A)→ L1(M, µ),

Ah = 7 lim
t→0

Pth − h

t

Example

▶ Tth = h(x − ct) =⇒ A = −c ∂
∂x

▶ Transport PDE : ∂u
∂t = Au = −c ∂u

∂x

Continuity equation ⇐⇒ A = −Lf − divµ(f )

7in the strong sense
8Lasota and Mackey, Chaos, Fractals and Noise.
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Hybrid Transfer Operators
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Hybrid Frobenius Perron Operator

Definition
Let H = (M, f ,S ,∆) a hybrid system and let φH

t be the hybrid
flow. Then the Frobenius Perron operator associated to H is the
semigroup of operators PH

t : L1(M)→ L1(M), satisfying∫
A
PH
t h(x)dµ(x) =

∫
φH
−t(A)

h(x)dµ(x), ∀ A ∈ B

S

∆(S)
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Objective

Continuity equation for the hybrid system ⇐⇒ infinitesimal
generator of the hybrid transfer operator

Naive approach

Discrete + continuous = hybrid{
∂tu(t, x) +∇u(t, x) · f (x) = −divµ(f )u(t, x), if x /∈ ∆(S)

u(t+, x) = J−1(∆−1(x))u(t−,∆−1(x)) if x ∈ ∆(S)

after impact before impact
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Challenges

Dimensionality

▶ ∆ : S → M, dim(S) = n − 1.

▶ Determinant of n − 1× n matrix

▶ Change of variables S = {xn = 0}

=⇒ ∆∗ =

 ∂1∆1 ∂1∆2 . . . ∂1∆n

. . .
∂n−1∆1 ∂n−1∆2 . . . ∂n−1∆n


Missing a row!

Fundamental
How does infinitesimal volume change when moving through S?
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Fundamental challenge

▶ µ( n vectors) = volume of hypercube

▶ Only n − 1 linearly independent tangent vectors available at
y = ∆−1(x) ∈ S

S

∆(S)

y x

φH
−t(y)

φH
t (x)

TyS

∆∗TyS

∆∗
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Requirements for the new direction

Choose: direction ṽ & linear map such that

▶ {ṽ ,TyS} span TyM.

▶ det(∆) restricted to TyS and ∆∗TyS = det(linear map)

Natural choice: the flow direction and the extended differential9

Definition
The extended differential ∆f

∗ is the linear map : TyM → TxM
defined by:{

∆f
∗(v) = ∆∗(v) if v ∈ TyS

∆f
∗(v) = c · f (∆(y)) if v = c · f (y) ∈ Span(f (y))

The hybrid Jacobian: J fµ := det(∆f
∗)

9Clark William and Bloch Anthony. “Invariant forms in hybrid and impact
systems and a taming of Zeno”. In: Arch. Rational Mech. Anal (2022).
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Illustration

S

∆(S)

y x

φH
−t(y)

φH
t (x)

TyS

∆∗TyS

∆f
∗
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Natural decomposition of the tangent space
▶ fx ∦ S =⇒ decomposition exists
▶ No extra structure needed!

S

Span(fx)

v
TyS

vs

v f

φH
t

Check:

▶ J fµ =

∣∣∣∣∣∣
∂1∆1 . . . ∂1∆n−1

. . .
∂n−1∆1 . . . ∂n−1∆n−1

∣∣∣∣∣∣ =∣∣∣∣∣∣∣∣
∂1∆1 . . . ∂1∆n−1 ∂1∆n

. . .
∂n−1∆1 . . . ∂n−1∆n−1 ∂2∆n

f 1 . . . f n−1 fn

∣∣∣∣∣∣∣∣
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Hybrid transfer operator

Theorem10

Let H be a smooth hybrid dynamical system and suppose
|∆−1({x})| is finite ∀ x . Additionally, let µ ∈ Ωn(M) be a
reference volume-form and suppose that J fµ ̸= 0. Then, the hybrid

transfer operator u(t, x) = PH
t h(x) satisfies the following:

∂u
∂t + du(f ) = −u divµ(f ) x /∈ ∆(S)

u(t+, x) =
∑

y∈∆−1(x)

1

J fµ(∆) ◦∆−1
(y)u(t−, y) x ∈ ∆(S)

10 Et al. “A Study of the Long-Term Behavior of Hybrid Systems with
Symmetries via Reduction and the Frobenius-Perron Operator”. In: (2023).
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Applications
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The bouncing ball

t

x
▶ e.o.m.

{
ẋ = 1

mv

v̇ = −mg

▶ guard: S = {x = 0, v < 0}.

▶ reset: ∆(x , v) = (x ,−c2v), 0 < c ≤ 1.
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The bouncing ball results (c = 1)

Runtime ≈ 450 s 31 / 55



The bouncing ball comparison

Runtime ≈ 3 days
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An SIR model


Ṡ = µN − βSI

N
− µS

İ =
βSI

N
− γI − µI − δI

Ṙ = γI − µR

∆ =


S+ = S−

I+ = (1− f )I−

R+ = R− + fI−

▶ Quarantine when threshold is reached.

▶ β = contact frequency, γ = recovery rate

▶ µ = birth/death rate, δ = mortality due to disease
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SIR model results
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Bacteria in competition

▶ Human gut, soil → enhances stability11

▶ Toxin production after threshold is reached.

src:Zimina M.I. et al. “Identification and studying
of the biochemical properties of lactobacillus strains
Identification and studying of the biochemical
properties of lactobacillus strains”. In: Life Science
Journal 11.11 (January 2014), pp. 338–341

11Leonor Garćıa-Bayon and Laurie E. Comstock. “Bacterial antagonism in
host-associated microbial communities”. In: Science 361 (2018).
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Bacteria in competition

▶ Human gut, soil → enhances stability11

▶ Toxin production after threshold is reached.

k̇ =

{
Rk

(
1− k+s

N

)
, if αs < k

(R − C )k
(
1− k+s

N

)
, if sα ≥ k

ṡ =

{
Rs

(
1− k+s

N

)
, if sα < k

Rs
(
1− k+s

N

)
− Aks, if sα ≥ k

▶ R - growth rate, C - cost for toxin production, N - carrying
capacity, A - killing rate of the toxin, α - detection threshold

11Garćıa-Bayon and Comstock, “Bacterial antagonism in host-associated
microbial communities”.
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Bacteria in competition results

Runtime ≈ 44.78 s
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Future research directions
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Better numerical methods

Current state of the solver:

▶ Semi Lagrangian
discretization

▶ Left neighbour
interpolation

▶ Characteristics out of the
grid =⇒ run until it
goes back inside the grid,
or until time 0 is reached

xi ,t

xi ,t+1 xi + 1,t+1

xi + 1,t
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Better numerical methods

▶ Finite differences - spacing next to the discontinuity12

▶ Discontinuous Galerkin method13

▶ Finite volumes14

12Hogarth W. et al. “A comparative study of finite differences methods for
solving the one dimensional transport equation with an initial boundary value
discontinuity”. In: Computers Math. Applic 20.11 (1990).

13Miloslav Feistauer V́ıt Doleǰśı. Discontinuous Galerkin Discontinuous
Galerkin Method. Springer Series in Computational Mathematics, 2010.

14Aymard Benjamin et al. “A numerical method for transport equations with
discontinuity flux functions: application to mathematical modeling of cell
dynamics”. In: SIAM J. Sci. Comput 36 (2013).
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Introduce stochasticity

Stochastic dynamics, deterministic transition{
dXt = f (Xt , t)dt + σ(Xt , t)dWt , if Xt /∈ S

Xt = ∆(Xt), if Xt ∈ S

▶ Focker Plank equation instead of continuity

∂

∂t
p +

∂

∂x
(µp)− ∂2

∂x

(
σ2

2
p

)
= 0

▶ Issue: hybrid jacobian

40 / 55



Example
▶ f (x) = sin(x), σ(x) = x , ∆(x) = −x , S = {x = ±0.5}
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Introduce stochasticity

▶ Deterministic dynamics, stochastic impact surface
▶ Teleportation: transition happens at any point with probability

λ.

▶ Example: ẋ = x transition to ẋ = −x with probability 0.4.

▶ Teleportation after time t ≈Poisson(λ)
▶ Stochastic dynamics, stochastic transition surface
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Introduce controls

Control problem

ẋ = f (x , u)

FP
∂tρt + ∇ (ρt f

u) = 0

Cost + PMP + u∗

Hamiltonian system

ẋ = ∂p H
ṗ = −∂x H

FP

∂tρ(x , p) +∇(ρt XH) = 0

??
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Thank you for your attention
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Systems with Symmetries via Reduction and the
Frobenius-Perron Operator
arXiv:2309.12569 (2023).

∼ and William Clark How do we walk? Using hybrid holonomy
to approximate non-holonomic systems
2022 IEEE 61st Conference on Decision and Control (CDC)
2022.

∼ , Max Ruth, Dora Kassabova, William Clark Optimal
Control of Nonholonomic Systems via Magnetic Fields
IEEE Control Systems Letters, 7, 793-798, 2022.
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Thanks for listening

William Clark and ∼ Optimality of Zeno Executions in Hybrid
Systems
2023 American Control Conference (ACC), 3983-3988, 2023.

∼ , Mark Walth, Robert Stephany, Gabriella Torres Nothaft,
Arnaldo Rodriguez-Gonzalez, William Clark Learning the Delay
Using Neural Delay Differential Equations
arXiv:2304.01329, 2023. poyyguyfo

William Clark, ∼ and Andrew J. Graven A Geometric Approach
to Optimal Control of Hybrid and Impulsive Systems
arXiv:2111.11645, 2021.

William Clark and ∼ Optimal control of hybrid systems via
hybrid lagrangian submanifolds
IFAC-PapersOnLine 54, 88-93, 2021.
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Supplementary slides
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Lebesque measure on a manifold

(M, g) (paracompact) Riemannian manifold

Volume form15

dVg ∈ Ωn(M) is the unique form such that

dVg =
√

det(gij)dx1 . . . dxn

Equivalently dVg = ϵ1 ∧ · · · ∧ ϵn for {ϵi} oriented orthonormal
coframe on T ∗M.

Lebesque measure

S ⊂ M measurable if x(S ∩ U) ∈ Rn measurable ∀ (U, x) chart.

λM
x (S ∩ U) =

∫
x(S∩U)

√
det(g(∂xi , ∂xj ))dλ

15John M. Lee. Introduction to Riemannian manifolds. Springer, 2010.
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Determinants16

M and N be n-dimensional manifolds µ ∈ Ωn(M) and η ∈ Ωn(N).
Let F : TM → TN be linear map. Then the determinant of F with
respect to µ and η is defined to be the unique C∞(M) function
such that

det
µ→η

(F ) · µ = F ∗η

det
µ→η

(F ) =
dF ∗η

dµ

16R. Abraham and J.R. Marsden. Foundations of Mechanics.
Addison-Wesley Publishing Company, lnc., 1987.
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Continuity equation precise statement17

Lemma
Let f be a Borel vector field satisfying∫ T

0
supB |f |+ Lip(f ,B)dt ≤ ∞

∫ T

0

∫
M
|f (x)|dµ(x)dt ≤ ∞

and let ϕt be the maximal solution of ẋ = f (x)(*). Then
ρt = ϕt#ρ is a solution to ∂tρt +∇(f ρt) = 0 in the interval
(0, τ(x)− ϵ)∀ ϵ > 0 where τ(x) = maximal time on which
solutions to (*) starting from x are defined.

17Luigi, Nicola, and Giuseppe, Gradient Flows in Metric Spaces and in the
Space of Probability Measures.
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The divergence of a vector field

Let ϕt : M → M be the flow of a vector field f : M → TM. Let
µ ∈ Ωn(M). Consider

lim
t→0

ϕt#µ

This is a measure in Ωn(M). Hence ∃ divµ(f ) : M → M such that:

lim
t→0

ϕt#µ = divµ(f )µ

In coordinates with µ = dx1 ∧ · · · ∧ dxn, divµ(f ) =
∑n

i=1
∂f
∂xi
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The augmented differential and the hybrid Jacobian19

Definition
The hybrid Jacobian is the unique function Jµ(∆) : S → R such
that

∆∗ι∗∆(S)if α = Jµ(∆)ι∗S if α

n − 1 forms on S

Theorem18

detµ→µ∆
f
∗ = Jµ(f )

18 Et al., “A Study of the Long-Term Behavior of Hybrid Systems with
Symmetries via Reduction and the Frobenius-Perron Operator”.

19William and Anthony, “Invariant forms in hybrid and impact systems and a
taming of Zeno”.
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Hybrid invariant differential forms20

Assume H is a hybrid system and α ∈ Ωk(M).

▶ A differential form is invariant of (φH
t )

∗α = α.

▶ This is equivalent to α∆(y)(∆
f
∗v1, . . . ,∆

f
∗vn) = αy (v1, . . . , vn)

▶ Three conditions have to be satisfied:
Lf (α) = 0

∆∗ι∗∆(S)α = ι∗Sα ← specular condition

∆∗ι∗∆(S)if α = ι∗S if α ← energy condition

20William and Anthony, “Invariant forms in hybrid and impact systems and a
taming of Zeno”.
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Extension to non-invertible maps

S ∆(S)

EE1

E2

E3

x

y1

y2

y3

φ1
−t

φ2
−t

φ3
−t
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The hybrid transfer PDE equation

The bouncing ball{
∂u
∂t +

v
m

∂u
∂x −mg ∂u

∂v = 0, for x ̸= 0;

u(t+, 0, v) = u(t−, 0,−v), otherwise.

The SIR model

∂u

∂t
+ (µ− µs − (β − δ)si)

∂u

∂s
+ (βsi + δi2 − (γ + µ+ δ)i)

∂u

∂i
= (2µ− β(s − i) + γ + δ − 3δi) u,

u(t+, s, α(1− f )) =

=
−βαs + δα2 − (g + µ+ δ)α

−βαs(1− f ) + δα2(1− f )2 − (g + µ+ δ)α(1− f )
u(t−, s, α).
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The hybrid jacobian for mechanical systems

Theorem (21)

Let H : T ∗M → R be a natural Hamiltonian. Let ω be the
symplectic form on T ∗M, and assume ∆ is the impact map
coming from the corner conditions. Assume moreover that S is the
0 level set of h : M → R.

∆ =

(
x , p − (1 + c2)

p(∇h)
dh(∇h)

dh

)
Then the hybrid Jacobian is Jωn f = c4

21 Et al., “A Study of the Long-Term Behavior of Hybrid Systems with
Symmetries via Reduction and the Frobenius-Perron Operator”.
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