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Takens embedding theorem: there is an embedding between the true 
attractor and the delay reconstruction

Sea surface temperature (NOAA)

?



Φh,ϕt
(x) := (h(x), h(ϕτ(x)), …h(ϕ(d−1)τ(x))) ∈ ℝd

h
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Notion of „sameness”

  Definition:  is an embedding if:

-  is bijective onto 

-  is differentiable 

-  is injective 

f : M → N
f f(M)
f
Dfx ∀x ∈ M
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Goal: learn the embedding from data
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Learning paradigm
Given samples  learn {xi, yi = f(xi)}i f

For Takens: long trajectory {xti, Φ(xti)}
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Takens requires clean data, deterministic setup.  

Chaos + Uncertainty in the initial position   ρ0 ⟹ ϕt#ρ0

Stochastic dynamics ρt = law(Xt)
Noisy data , x̃t = xt + 𝒩(0,1) ρt = δxt

* 𝒩(0,1)

Limitations

Clean

Noisy

Tracking information might not be available
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Optimize  for L̃(θ) =
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K

K

∑
i=1

𝒟(Fθ(ρi
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y) Fθ : 𝒫2(M) → 𝒫2(N)

If we can show: 

 is an embedding
F*θ
 is directly related to F*θ ftrue

 is robuster to noiseF*θ

What is an embedding in 𝒫2(M)?



Eulerian framework - Optimal transport
𝒫2(M) = {ρ |∫ |x |2 ρ < ∞}

ρ0

ρ1

W2
2(ρ0, ρ1) = min

(ρt,vt) ∫
1

0 ∫ ∥vt∥2dμtdt ∂tρt + ∇ ⋅ (ρtvt) = 0

ρtv0

Kinetic energy ⟺ ·xt = v(x) connects  and has velocity ρt ρ0 & ρ1 vt

Geodesic!

Tρ0
𝒫(M)
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Measure based reconstruction

Optimize  for L̃(θ) =
1
K
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∑
i=1

𝒟(Fθ(ρi
x), ρi

y) Fθ : 𝒫2(M) → 𝒫2(N)
fθ : M → Nfθ#

   has    as a minimizerL̃true(θ) =
1
K ∑

i

𝒟( fθ#ρi
x, ftrue#ρi

x) f*θ = ftrue

 =  in the noise free settingF*θ ftrue#

When  then  generalization of the point-wise settingρi
x = δxi

L̃(θ) = L(θ) ⟹
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Numerical Results
Lorentz system

Roessler system





Thank you for your attention!

Contact me: mao237@cornell.edu


References: 1 Floris Takens. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Warwick 
1980, pages 366–381. Springer, 1981


2Luigi Ambrosio, Nicola Gigli, and Giuseppe Savare. Gradient Flows in Metric Spaces and in the Space of Probability 
Measures. Birkhaeuser Verlag, 2005.


3Jonah Botvinick-Greenhouse, Maria Oprea, Yunan Yang and Romit Maulik, Measure-Theoretic Takens’ Time-Delay 
Embedding:Analysis and Application,  in preparation, 2024


mailto:mao237@cornell.edu


Supplemental slides
Transform trajectory data into measure data

Partition domain into {Ci}M
i=1

Ci



Supplemental slides
Transform trajectory data into measure data

Partition domain into {Ci}M
i=1

μi ∼ ∑
xj∈Ci

δxjEmpirical distribution conditioned on the cell

As diameter of  we obtain point wise reconstructionCi → 0

Ci



Supplemental slides
Transform trajectory data into measure data

Partition domain into {Ci}M
i=1

μi ∼ ∑
xj∈Ci

δxjEmpirical distribution conditioned on the cell

As diameter of  we obtain point wise reconstructionCi → 0

Ci

Works with different data assumptions


