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o Takens embedding theorem: there is an embedding between the true
attractor and the delay reconstruction
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Embeddings

@ Notion of ,,sameness”

@ Diffeomorphism that preserves the

differential structure

Definition: f: M — N is an embedding if:
- f is bijective onto f(M)

- f is differentiable
- Df. is injective Vx € M

o Goal: learn the embedding from data
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® Given samples {x;, y; = f(x;) }. learn f

xX(t—-27)

o For Takens: long trajectory {x,, ®(x,)}
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Limitations

Takens requires clean data, deterministic setup.

Chaos + Uncertainty in the initial position p, = ¢,

Stochastic dynamics p, = law(X))
Noisy data X, = x, + 4 (0,1), p, = Oy ™ A(0,1)

Tracking information might not be available

Noisy

X(t—-271)

x(t-271)
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Our approach

» Sparse and noisy data can be represented as { pf;, pyi}

) I <« o
« Optimize [(0) = — D D(Fyph), pl for Fy : Py(M) — Po(N)
=1

e |f we can show:

+ [ is an embedding What is an embedding in ,(M)?
» > is directly related to f,,,,,

-> Fg,I< is robuster to noise



Eulerian framework - Optimal transport

P (M) = {p\J\X\Zp < oo}

Geodesic!

1
W) = min | [t 00,4+ 9 - 9) =0
(Ptth) 0 \-_\/—_J

p; connects py & p; and has velocity v, < x, = v(x)

M|’
Kinetic energy
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Theorem: Let f : M — N be an embedding and denote by

F=f#:9,M)— 9P,(N) its push-forward. Then F'is an embedding with respect
to the Wasserstein geometry.

Q Fg is an embedding

p(t1)
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Measure based reconstruction

) I < o
e Optimize L(0) = % Z @%pfc),pyl) for FM)

=1 f@# fe : M — N

3 1 | |
o L) =2 D D(fHplfitpl) bhas fE=f,,, asaminimizer

Q F5 = fi07 In the noise free setting

e When p; = 5Xi then L(0) = L(0) = generalization of the point-wise setting
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Numerical Results

Ground Truth Measure-Based Reconstruction Pointwise Reconstruction

Lorentz system

Ground Truth Measure-Based Reconstruction Pointwise Reconstruction
Roessler system
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Thank you for your attention!

Contact me: mao237®@cornell.edu
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Transform trajectory data into measure data

@ Partition domain into {C;}?,

@ Empirical distribution conditioned on the cell #; ~ Z Oy
xe(;

@ As diameter of C; = 0 we obtain point wise reconstruction

@ Works with different data assumptions




